How we teach calculations:

Calculation Policy for Mathematics

January 2018

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Year

Y3	Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Y4	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones	$41+8$ $\begin{gathered} \begin{array}{c} 1+8=9 \\ 40+9 \end{array}=49 \\ 41 \\ 8 \\ 8 \end{gathered}+$
Y5	TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Children to represent the base 10 in a place value chart.	Looking for ways to make 10.

Y6	Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1 s column- we exchange for 1 ten, when there are 10 tens in the 10 s column- we exchange for 1 hundred.	Children to represent the counters in a place value chart, circling when they make an exchange.	$243+$
	100 s 10 s 1 s	100 s 10 s is 00 0000 000	368
			$\begin{array}{lll} 1 & 1 & \\ \hline 6 & 1 & 1 \end{array}$

Conceptual variation; different ways to ask children to solve $21+34$

Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?	$21+$
$21+34=55$. Prove it	5
$21+34=$	

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

$10 \mathbf{s}$	1s
	$?$
	$?$
$?$	5

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Year	Concrete							Pictorial	Abstract
FS	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).$4-3=1$							Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. Q シ®O	4-3 = [ॅ. $=4-3$ \square
Y1	Counting back (using number lines or number tracks) children start with 6 and count back 2.$6-2=4$							Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Y2	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Y3	Making 10 using ten frames. $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$

Conceptual variation; different ways to ask children to solve 391-186

Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend?

Calculate the difference between 391 and 186.

Missing digit calculations

What is 186 less than 391 ?

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Y3	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & \qquad 10=5+5 \end{aligned}$
Y4	Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used
Y5	Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. $$

		s to ask childr 6×23-	Whatisthe procolution?		
			100s	10s	1 s
		$\begin{array}{ll} \\ & \begin{array}{c} 63 x \\ \hline \end{array} \\ \hline \end{array}$		㩆虎	

Calculation policy: Division

Key language: share, group, divide, divided by, half.

Conceptual variation; different ways to ask children to solve $615 \div 5$

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

What is the calculation? What is

